Applications of nanotechnology in agriculture and water quality management
Due to their small size and unique physico-chemical characteristics, nanomaterials have gained importance in the agri-food sector, notably in preservation and packaging. Future applications will focus on shelf life, food quality, safety, fortification and biosensors for contaminated or spoiled food, irrigating water and drinking water. Different types and shapes of nanomaterials are being used depending upon the needs and nature of the work in agriculture and water quality management. Here we review the application of nanotechnology in agriculture. The major points discussed are: (1) Nanomaterials for agriculture and water quality management. (2) Research interests such as nanoscale carriers, fabricated xylem vessels, nanolignocellulosic materials, clay nanotubes, photocatalysis, bioremediation of resistant pesticides, disinfectants, agricultural wastewater treatment, nanobarcode technology, quantum dots for staining bacteria and nanobiosensors. (3) Nanotechnological applications for agriculture, which includes nanolignodynamic metallic particles, photocatalysis, desalination, removal of heavy metals and wireless nanosensors.
This is a preview of subscription content, log in via an institution to check access.
Access this article
Subscribe and save
Springer+ Basic
€32.70 /Month
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (France)
Instant access to the full article PDF.
Rent this article via DeepDyve
Similar content being viewed by others
Nanoagriculture and Water Quality Management
Chapter © 2016
Understanding the Role of Nanomaterials in Agriculture
Chapter © 2016
Applications of Nanomaterials to Enhance Plant Health and Agricultural Production
Chapter © 2021
Explore related subjects
References
- Abazari R, Mahjoub AR, Sanati S (2014) A facile and efficient preparation of anatase titania nanoparticles in micelle nanoreactors: morphology, structure, and their high photocatalytic activity under UV light illumination. RSC Adv 4:56406–56414. doi:10.1039/C4RA10018BArticleCASGoogle Scholar
- Abdallah H, Moustafa AF, AlAnezi AA, El-Sayed HEM (2014) Performance of a newly developed titanium oxide nanotubes/polyethersulfone blend membrane for water desalination using vacuum membrane distillation. Desalination 346:30–36. doi:10.1016/j.desal.2014.05.003ArticleCASGoogle Scholar
- Arciola CR, Campoccia D, Speziale P et al (2012) Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials. doi:10.1016/j.biomaterials.2012.05.031Google Scholar
- Babula P, Adam V, Opatrilova R et al (2008) Uncommon heavy metals, metalloids and their plant toxicity: a review. Environ Chem Lett 6:189–213 ArticleCASGoogle Scholar
- Bandyopadhyay S, Peralta-Videa JR, Gardea-Torresdey JL (2013) Advanced analytical techniques for the measurement of nanomaterials in food and agricultural samples: a review. Environ Eng Sci 30:118–125. doi:10.1089/ees.2012.0325ArticleCASGoogle Scholar
- Bargar JR, Bernier-Latmani R, Giammar DE, Tebo BM (2008) Biogenic uraninite nanoparticles and their importance for uranium remediation. Elements 4:407–412. doi:10.2113/gselements.4.6.407ArticleCASGoogle Scholar
- Bhatkhande DS, Pangarkar VG, Beenackers A (2002) Photocatalytic degradation for environmental applications—a review. J Chem Technol Biotechnol 77:102–116. doi:10.1002/jctb.532ArticleCASGoogle Scholar
- Bhushan B (2011) Biomimetics inspired surfaces for drag reduction and oleophobicity/philicity. Beilstein J Nanotechnol 2:66–84. doi:10.3762/bjnano.2.9ArticleCASGoogle Scholar
- Branton D, Deamer DW, Marziali A et al (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 26:1146–1153 ArticleCASGoogle Scholar
- Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94:154–169 ArticleCASGoogle Scholar
- Cai D, Wu Z, Jiang J et al (2014) Controlling nitrogen migration through micro-nano networks. Sci Rep 4:3665. doi:10.1038/srep03665ArticleCASGoogle Scholar
- Chakma S, Moholkar VS (2015) Investigation in mechanistic issues of sonocatalysis and sonophotocatalysis using pure and doped photocatalysts. Ultrason Sonochem 22:287–299 ArticleCASGoogle Scholar
- Chamakura K, Perez-Ballestero R, Luo Z et al (2011) Comparison of bactericidal activities of silver nanoparticles with common chemical disinfectants. Colloids Surf B Biointerfaces 84:88–96. doi:10.1016/j.colsurfb.2010.12.020ArticleCASGoogle Scholar
- Chauke VP, Antunes E, Chidawanyika W, Nyokong T (2011) Photocatalytic behaviour of tantalum(V) phthalocyanines in the presence of gold nanoparticles towards the oxidation of cyclohexene. J Mol Catal A Chem 335:121–128. doi:10.1016/j.molcata.2010.11.023ArticleCASGoogle Scholar
- Chen H, Yada R (2011) Nanotechnologies in agriculture: new tools for sustainable development. Trends Food Sci Technol 22:585–594. doi:10.1016/j.tifs.2011.09.004ArticleCASGoogle Scholar
- Cheng LW, Stanker LH (2013) Detection of botulinum neurotoxin serotypes A and B using a chemiluminescent versus electrochemiluminescent immunoassay in food and serum. J Agric Food Chem 61:755–760. doi:10.1021/jf3041963ArticleCASGoogle Scholar
- Chiu HM, Yang TH, Hsueh YC et al (2015) Fabrication and characterization of well-dispersed plasmonic Pt nanoparticles on Ga-doped ZnO nanopagodas array with enhanced photocatalytic activity. Appl Catal B Environ 163:156–166. doi:10.1016/j.apcatb.2014.07.039ArticleCASGoogle Scholar
- Compagnone D, McNeil CJ, Athey D et al (1995) An amperometric NADH biosensor based on NADH oxidase from Thermus aquaticus. Enzyme Microb Technol 17:472–476. doi:10.1016/0141-0229(94)00110-DArticleCASGoogle Scholar
- Cross KM, Lu Y, Zheng T, et al (2014) Water decontamination using iron and iron oxide nanoparticles, chapter 27. In: Savage N, Diallo M, Duncan J, Street A, Sustich R (eds) Nanotechnology applications for clean water. William Andrew Inc., pp 423–439
- Cursino L, Li Y, Zaini PA et al (2009) Twitching motility and biofilm formation are associated with tonB1 in Xylella fastidiosa. FEMS Microbiol Lett 299:193–199. doi:10.1111/j.1574-6968.2009.01747.xArticleCASGoogle Scholar
- Danie Kingsley J, Ranjan S, Dasgupta N, Saha P (2013) Nanotechnology for tissue engineering: need, techniques and applications. J Pharm Res. doi:10.1016/j.jopr.2013.02.021Google Scholar
- Das R, Ali ME, Hamid SBA et al (2014) Carbon nanotube membranes for water purification: a bright future in water desalination. Desalination 336:97–109 ArticleCASGoogle Scholar
- Dasgupta N, Ranjan S, Mundekkad D et al (2015) Nanotechnology in agro-food: from field to plate. Food Res Int 69:381–400 ArticleGoogle Scholar
- Dasgupta N, Ramalingam C (2016) Silver nanoparticle antimicrobial activity explained by membrane rupture and reactive oxygen generation. Environ Chem Lett 14:477–485 ArticleCASGoogle Scholar
- Dasgupta N, Ranjan S, Chakraborty AR et al (2016a) Nanoagriculture and water quality management. In: Ranjan S, Nandita D, Lichtfouse E (eds) Nanoscience in food and agriculture 1. Springer, Berlin Google Scholar
- Dasgupta N, Ranjan S, Patra D et al (2016b) Bovine serum albumin interacts with silver nanoparticles with a “side-on” or “end on” conformation. Chem Biol Interact 253:100–111. doi:10.1016/j.cbi.2016.05.018ArticleCASGoogle Scholar
- Dasgupta N, Ranjan S, Rajendran B et al (2016c) Thermal co-reduction approach to vary size of silver nanoparticle: its microbial and cellular toxicology. Environ Sci Pol Res 23:4149–4163 ArticleCASGoogle Scholar
- De La Fuente L, Burr TJ, Hoch HC (2007) Mutations in type I and type IV pilus biosynthetic genes affect twitching motility rates in Xylella fastidiosa. J Bacteriol 189:7507–7510. doi:10.1128/JB.00934-07ArticleCASGoogle Scholar
- Ditta A (2012) How helpful is nanotechnology in agriculture? Adv Nat Sci Nanosci Nanotechnol 3:33002. doi:10.1088/2043-6262/3/3/033002ArticleCASGoogle Scholar
- Dizaj SM, Lotfipour F, Barzegar-Jalali M et al (2014) Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C 44:278–284 ArticleCASGoogle Scholar
- Drobek M, Yacou C, Motuzas J et al (2012) Long term pervaporation desalination of tubular MFI zeolite membranes. J Membr Sci 415–416:816–823. doi:10.1016/j.memsci.2012.05.074ArticleCASGoogle Scholar
- Edgar P-E, Andrea B, Ramon M-M, Jose MB (2011) Recent patents in food nanotechnology. Recent Pat Food Nutr Agric 3:172–178 ArticleGoogle Scholar
- El-Deen AG, Barakat NAM, Khalil KA et al (2014a) Graphene/SnO2 nanocomposite as an effective electrode material for saline water desalination using capacitive deionization. Ceram Int 40:14627–14634. doi:10.1016/j.ceramint.2014.06.049ArticleCASGoogle Scholar
- El-Deen AG, Barakat NAM, Kim HY (2014b) Graphene wrapped MnO2-nanostructures as effective and stable electrode materials for capacitive deionization desalination technology. Desalination 344:289–298. doi:10.1016/j.desal.2014.03.028ArticleCASGoogle Scholar
- Essalhi M, Khayet M (2014) Self-sustained webs of polyvinylidene fluoride electrospun nano-fibers: effects of polymer concentration and desalination by direct contact membrane distillation. J Membr Sci 454:133–143. doi:10.1016/j.memsci.2013.11.056ArticleCASGoogle Scholar
- Fan W, Wu C, Han P et al (2012) Porous Ca–Si-based nanospheres: a potential intra-canal disinfectant-carrier for infected canal treatment. Mater Lett 81:16–19. doi:10.1016/j.matlet.2012.04.142ArticleCASGoogle Scholar
- Farmen L (2009) Commercialization of nanotechnology for removal of heavy metals in drinking water. In: Savage N, Diallo M, Duncan J, Street A, Sustich R (eds) Nanotechnology applications for clean water. William Andrew Inc., Norwich, pp 115–130
- Faunce T, Bruce A, Donohoo A et al (2014) Nanomaterial governance, planetary health, and the sustainocene transition. In: Hull M, Bowman D (eds) Nanotechnology environmental health and safety, 2nd edn. William Andrew Inc., Norwich Google Scholar
- Feigl C, Russo SP, Barnard AS (2010) Safe, stable and effective nanotechnology: phase mapping of ZnS nanoparticles. J Mater Chem 20:4971–4980 ArticleCASGoogle Scholar
- Goh PS, Ismail AF, Ng BC (2013) Carbon nanotubes for desalination: performance evaluation and current hurdles. Desalination 308:2–14 ArticleCASGoogle Scholar
- Gruère GP (2012) Implications of nanotechnology growth in food and agriculture in OECD countries. Food Policy 37:191–198. doi:10.1016/j.foodpol.2012.01.001ArticleGoogle Scholar
- Guo X, Chen C, Song W et al (2014) CdS embedded TiO2 hybrid nanospheres for visible light photocatalysis. J Mol Catal A Chem 387:1–6. doi:10.1016/j.molcata.2014.02.020ArticleCASGoogle Scholar
- Hamon M, Oyarzabal OA, Hong JW (2013) Nanoliter/picoliter scale fluidic systems for food safety. In: Bosoon P, Michael A (eds) ACS symposium series: advances in applied nanotechnology for agriculture. American Chemical Society, pp 145–165
- Han D, Hong J, Kim HC et al (2013) Multiplexing enhancement for the detection of multiple pathogen DNA. J Nanosci Nanotechnol. doi:10.1166/jnn.2013.8096Google Scholar
- He MX, Wang JL, Qin H et al (2014) Bamboo: a new source of carbohydrate for biorefinery. Carbohydr Polym 111:645–654 ArticleCASGoogle Scholar
- Hoek EMV, Ghosh AK (2009) Nanotechnology-based membranes for water purification. Nanotechnol Appl Clean Water 4:47–58 ArticleGoogle Scholar
- Homhoul P, Pengpanich S, Hunsom M (2011) Treatment of distillery wastewater by the nano-scale zero-valent iron and the supported nano-scale zero-valent iron. Water Environ Res 83:65–74. doi:10.2175/106143010X12780288628291ArticleCASGoogle Scholar
- Hossain MK, Ghosh SC, Boontongkong Y et al (2005) Growth of zinc oxide nanowires and nanobelts for gas sensing applications. J Metastab Nanocryst Mater 23:27–30. doi:10.4028/www.scientific.net/JMNM.23.27ArticleCASGoogle Scholar
- Hsu HL, Jehng JM (2009) Synthesis and characterization of carbon nanotubes on clay minerals and its application to a hydrogen peroxide biosensor. Mater Sci Eng C Biomim Supramol Syst 29:55–61. doi:10.1016/j.msec.2008.05.011ArticleCASGoogle Scholar
- Hua M, Zhang S, Pan B et al (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 212:317–331. doi:10.1016/j.jhazmat.2011.10.016ArticleCASGoogle Scholar
- Huang Q, Yu H, Ru Q (2010) Bioavailability and delivery of nutraceuticals using nanotechnology. J Food Sci 75:R50–R57. doi:10.1111/j.1750-3841.2009.01457.xArticleCASGoogle Scholar
- Hutter E, Maysinger D (2013) Gold-nanoparticle-based biosensors for detection of enzyme activity. Trends Pharmacol Sci 34:497–507 ArticleCASGoogle Scholar
- Ingle AP, Seabra AB, Duran N, Rai M (2014) Nanoremediation: a new and emerging technology for the removal of toxic contaminant from environment, chapter 9. In: Das S (ed) Microbial biodegradation and bioremediation, 1st edn. Elsevier
- Jain A, Shivendu R, Nandita D, Ramalingam C (2016) Nanomaterials in food and agriculture: an overview on their safety concerns and regulatory issues. Crit Rev Food Sci Nutr. doi:10.1080/10408398.2016.1160363Google Scholar
- Janardan S, Suman P, Ragul G et al (2016) Assessment on antibacterial activity of nanosized silica derived from hypercoordinated silicon(IV) precursors guidelines to the referees. RSC Adv. doi:10.1039/C6RA12189FGoogle Scholar
- Jasra RV, Bajaj HC, Mody HM (1999) Clay as a versatile material for catalysts and adsorbents. Bull Catal Soc India 9:113–121 Google Scholar
- Ji Z, Ismail MN, Callahan DM et al (2011) The role of silver nanoparticles on silver modified titanosilicate ETS-10 in visible light photocatalysis. Appl Catal B Environ 102:323–333. doi:10.1016/j.apcatb.2010.12.021ArticleCASGoogle Scholar
- Jiang Z, Shangguan W (2015) Rational removal of stabilizer-ligands from platinum nanoparticles supported on photocatalysts by self-photocatalysis degradation. Catal Today 242:372–380. doi:10.1016/j.cattod.2014.07.037ArticleCASGoogle Scholar
- Jiang LC, Basri M, Omar D et al (2013) Green nanoemulsion-laden glyphosate isopropylamine formulation in suppressing creeping foxglove (A. gangetica), slender button weed (D. ocimifolia) and buffalo grass (P. conjugatum). Pest Manag Sci 69:104–111. doi:10.1002/ps.3371ArticleCASGoogle Scholar
- Johnston CT (2010) Probing the nanoscale architecture of clay minerals. Clay Miner 45:245–279 ArticleCASGoogle Scholar
- Kabeel AE, El-Said EMS (2013) A hybrid solar desalination system of air humidification-dehumidification and water flashing evaporation. Part I. A numerical investigation. Desalination 320:56–72. doi:10.1016/j.desal.2013.04.016ArticleCASGoogle Scholar
- Kabeel AE, El-Said EMS (2014) A hybrid solar desalination system of air humidification, dehumidification and water flashing evaporation: part II. Experimental investigation. Desalination 341:50–60. doi:10.1016/j.desal.2014.02.035ArticleCASGoogle Scholar
- Kalra A, Chechi R, Khanna R (2010) Role of Zigbee Technology in agriculture sector. In: National conference on computational instrumentation NCCI 2010 CSIO (19–20 March 2010 Chandigarh, India), p 151
- Khanna A, Shetty VK (2014) Solar light induced photocatalytic degradation of Reactive Blue 220 (RB-220) dye with highly efficient Ag@ TiO 2 core–shell nanoparticles: a comparison with UV photocatalysis. Sol Energy 99:67–76 ArticleCASGoogle Scholar
- Khataee AR, Fathinia M, Joo SW (2013) Simultaneous monitoring of photocatalysis of three pharmaceuticals by immobilized TiO2 nanoparticles: chemometric assessment, intermediates identification and ecotoxicological evaluation. Spectrochim Acta Part A Mol Biomol Spectrosc 112:33–45. doi:10.1016/j.saa.2013.04.028ArticleCASGoogle Scholar
- Khataee A, Karimi A, Zarei M, Joo SW (2015) Eu-doped ZnO nanoparticles: sonochemical synthesis, characterization, and sonocatalytic application. Ultrason Sonochem. doi:10.1016/j.ultsonch.2015.03.016Google Scholar
- Ko Y-D, Kang J-G, Park J-G et al (2009) Self-supported SnO 2 nanowire electrodes for high-power lithium-ion batteries. Nanotechnology 20:455701. doi:10.1088/0957-4484/20/45/455701ArticleCASGoogle Scholar
- Ko W, Jung N, Lee M et al (2013) Electronic nose based on multipatterns of ZnO nanorods on a quartz resonator with remote electrodes. ACS Nano 7:6685–6690 ArticleCASGoogle Scholar
- Kumar R, Chawla J (2014) Removal of cadmium ion from water/wastewater by nano-metal oxides: a review. Water Qual Expo Heal 5:215–226. doi:10.1007/s12403-013-0100-8ArticleCASGoogle Scholar
- Kumar A, Ting Y-P (2013) Effect of sub-inhibitory antibacterial stress on bacterial surface properties and biofilm formation. Colloids Surf B Biointerfaces 111:747–754 ArticleCASGoogle Scholar
- Laborie M-PG (2009) Bacterial cellulose and its polymeric nanocomposites. In: Lucia LA, Rojas OJ (eds) The nanoscience and technology of renewable biomaterials. Wiley, Chichester, pp 231–271 ChapterGoogle Scholar
- Labroo P, Cui Y (2014) Graphene nano-ink biosensor arrays on a microfluidic paper for multiplexed detection of metabolites. Anal Chim Acta 813:90–96. doi:10.1016/j.aca.2014.01.024ArticleCASGoogle Scholar
- Lee KP, Arnot TC, Mattia D (2011) A review of reverse osmosis membrane materials for desalination—development to date and future potential. J Memb Sci 370:1–22 ArticleCASGoogle Scholar
- Lhomme L, Brosillon S, Wolbert D (2008) Photocatalytic degradation of pesticides in pure water and a commercial agricultural solution on TiO2 coated media. Chemosphere 70:381–386. doi:10.1016/j.chemosphere.2007.07.004ArticleCASGoogle Scholar
- Li D, Haneda H (2003) Morphologies of zinc oxide particles and their effects on photocatalysis. Chemosphere 51:129–137. doi:10.1016/S0045-6535(02)00787-7ArticleCASGoogle Scholar
- Li Y, Schluesener HJ, Xu S (2010) Gold nanoparticle-based biosensors. Gold Bull 43:29–41. doi:10.1007/BF03214964ArticleGoogle Scholar
- Li J, Xu Q, Wei X, Hao Z (2013) Electrogenerated chemiluminescence immunosensor for Bacillus thuringiensis Cry1Ac based on Fe3O4@ Au nanoparticles. J Agric Food Chem 61:1435–1440 ArticleCASGoogle Scholar
- Li X, Chen Y, Hu X et al (2014) Desalination of dye solution utilizing PVA/PVDF hollow fiber composite membrane modified with TiO2 nanoparticles. J Memb Sci 471:118–129. doi:10.1016/j.memsci.2014.08.018ArticleCASGoogle Scholar
- Lim CJ, Basri M, Omar D et al (2012) Green nano-emulsion intervention for water-soluble glyphosate isopropylamine (IPA) formulations in controlling Eleusine indica (E. indica). Pestic Biochem Physiol 102:19–29. doi:10.1016/j.pestbp.2011.10.004ArticleCASGoogle Scholar
- Liu Y, Chen X (2013) High permeability and salt rejection reverse osmosis by a zeolite nano-membrane. Phys Chem Chem Phys 15:6817–6824 ArticleCASGoogle Scholar
- Mahmood MA, Baruah S, Dutta J (2011) Enhanced visible light photocatalysis by manganese doping or rapid crystallization with ZnO nanoparticles. Mater Chem Phys 130:531–535. doi:10.1016/j.matchemphys.2011.07.018ArticleCASGoogle Scholar
- Malato S, Blanco J, Cáceres J et al (2002) Photocatalytic treatment of water-soluble pesticides by photo-Fenton and TiO2 using solar energy. Catal Today 76:209–220. doi:10.1016/S0920-5861(02)00220-1ArticleCASGoogle Scholar
- Mannoor MS, Tao H, Clayton JD et al (2012) Graphene-based wireless bacteria detection on tooth enamel. Nat Commun 3:763. doi:10.1038/ncomms1767ArticleCASGoogle Scholar
- Mathew AP, Laborie MPG, Oksman K (2009) Cross-linked chitosan/chitin crystal nanocomposites with improved permeation selectivity and pH stability. Biomacromol 10:1627–1632. doi:10.1021/bm9002199ArticleCASGoogle Scholar
- McClements DJ, Li Y (2010) Structured emulsion-based delivery systems: controlling the digestion and release of lipophilic food components. Adv Colloid Interface Sci 159:213–228. doi:10.1016/j.cis.2010.06.010ArticleCASGoogle Scholar
- McClements DJ, Decker EA, Park Y, Weiss J (2009) Structural design principles for delivery of bioactive components in nutraceuticals and functional foods. Crit Rev Food Sci Nutr 49:577–606. doi:10.1080/10408390902841529ArticleCASGoogle Scholar
- Melemeni M, Stamatakis D, Xekoukoulotakis NP et al (2009) Disinfection of municipal wastewater by TiO2 photocatalysis with UV-A, visible and solar irradiation and bdd electrolysis. Glob Nest J 11:357–363 Google Scholar
- Mulligan CN, Yong RN, Gibbs BF (2001) Heavy metal removal from sediments by biosurfactants. J Hazard Mater 85:111–125 ArticleCASGoogle Scholar
- Murphy K (ed) (2008) Nanotechnology: agriculture’s next industrial revolution. Financial Partner, Yankee Farm Credit, ACA, Williston, pp 3–5
- Myint MTZ, Al-Harthi SH, Dutta J (2014) Brackish water desalination by capacitive deionization using zinc oxide micro/nanostructures grafted on activated carbon cloth electrodes. Desalination 344:236–242. doi:10.1016/j.desal.2014.03.037ArticleCASGoogle Scholar
- Nandita D, Ranjan S, Mundra S et al (2016) Fabrication of food grade vitamin E nanoemulsion by low energy approach, characterization and its application. Int J Food Prop 19:700–708. doi:10.1080/10942912.2015.1042587ArticleCASGoogle Scholar
- Nangmenyi G, Economy J, Diallo M et al (2009) Nanometallic particles for oligodynamic microbial disinfection. In: Savage N, Diallo M, Duncan J, Street A, Sustich R (eds) Nanotechnology applications for clean water. Elsevier
- Naraginti S, Stephen FB, Radhakrishnan A, Sivakumar A (2015) Zirconium and silver co-doped TiO2 nanoparticles as visible light catalyst for reduction of 4-nitrophenol, degradation of methyl orange and methylene blue. Spectrochim Acta Part A Mol Biomol Spectrosc 135:814–819. doi:10.1016/j.saa.2014.07.070ArticleCASGoogle Scholar
- Nath N, Chilkoti A (2004) Label free colorimetric biosensing using nanoparticles. J Fluoresc 14:377–389 ArticleCASGoogle Scholar
- Nikonenko VV, Kovalenko AV, Urtenov MK et al (2014) Desalination at overlimiting currents: state-of-the-art and perspectives. Desalination 342:85–106. doi:10.1016/j.desal.2014.01.008ArticleCASGoogle Scholar
- Nithila SDR, Anandkumar B, Vanithakumari SC et al (2014) Studies to control biofilm formation by coupling ultrasonication of natural waters and anodization of titanium. Ultrason Sonochem 21:189–199. doi:10.1016/j.ultsonch.2013.06.010ArticleCASGoogle Scholar
- Pant M, Dubey S, Patanjali PK et al (2014) Insecticidal activity of eucalyptus oil nanoemulsion with karanja and jatropha aqueous filtrates. Int Biodeterior Biodegrad 91:119–127. doi:10.1016/j.ibiod.2013.11.019ArticleCASGoogle Scholar
- Patel PD (2002) (Bio) sensors for measurement of analytes implicated in food safety: a review. TrAC Trends Anal Chem 21:96–115 ArticleCASGoogle Scholar
- Pérez-Esteve E, Bernardos A, Martínez-Mañez R, Barat JM (2011) Recent patents in food nanotechnology. Recent Pat Food Nutr Agric 3:172–178. doi:10.2174/2212798411103030172ArticleGoogle Scholar
- Perez-Esteve E, Bernardos A, Martínez-Máñez R, Barat JM (2013) Nanotechnology in the development of novel functional foods or their package. An overview based in patent analysis. Recent Pat Food Nutr Agric 5:35–43 ArticleCASGoogle Scholar
- Pigeot-Rémy S, Simonet F, Errazuriz-Cerda E et al (2011) Photocatalysis and disinfection of water: identification of potential bacterial targets. Appl Catal B Environ 104:390–398. doi:10.1016/j.apcatb.2011.03.001ArticleCASGoogle Scholar
- Qi L, Pinggui W, Ku SJ (2009) Nanostructured visible-light photocatalysts for water purification. In: Savage N, Diallo M, Duncan J, Street A, Sustich R (ed) Nanotechnology applications for clean water: solutions for improving water quality. William Andrew Inc., Norwich, p 17
- Rambo CR, Hotza D, Da Cunha CR, Zollfrank C (2013) Directed photoluminescent emission of ZnO tetrapods on biotemplated Al2O3. Opt Mater (Amst) 36:562–567. doi:10.1016/j.optmat.2013.10.035ArticleCASGoogle Scholar
- Ranjan S, Ramalingam C (2016) Titanium dioxide nanoparticles induce bacterial membrane rupture by reactive oxygen species generation. Environ Chem Lett. doi:10.1007/s10311-016-0586-yGoogle Scholar
- Ranjan S, Dasgupta N, Chakraborty AR et al (2014) Nanoscience and nanotechnologies in food industries: opportunities and research trends. J Nanoparticle Res 16:2464. doi:10.1007/s11051-014-2464-5ArticleGoogle Scholar
- Ranjan S, Dasgupta N, Chinnappan S et al (2015) A novel approach to evaluate titanium dioxide nanoparticle-protein interaction through docking: an insight into mechanism of action. Proc Natl Acad Sci India Sect B Biol Sci. doi:10.1007/s40011-015-0673-zGoogle Scholar
- Ranjan S, Dasgupta N, Rajendran B et al (2016a) Microwave-irradiation-assisted hybrid chemical approach for titanium dioxide nanoparticle synthesis: microbial and cytotoxicological evaluation. Environ Sci Pollut Res. doi:10.1007/s11356-016-6440-8Google Scholar
- Ranjan S, Dasgupta N, Srivastava P, Ramalingam C (2016b) A spectroscopic study on interaction between bovine serum albumin and titanium dioxide nanoparticle synthesized from microwave-assisted hybrid chemical approach. J Photochem Photobiol B Biol 161:472–481. doi:10.1016/j.jphotobiol.2016.06.015ArticleCASGoogle Scholar
- Ranjan S, Nandita D, Lichtfouse E (2016c) Nanoscience in food and agriculture 3, 1st edn. Springer International Publishing, Switzerland Google Scholar
- Ranjan S, Nandita D, Lichtfouse E (2016d) Nanoscience in food and agriculture 1, 1st edn. Springer International Publishing, Switzerland Google Scholar
- Rizwan M, Singh M, Mitra CK, Morve RK (2014) Ecofriendly Application of Nanomaterials: nanobioremediation. J Nanoparticles 2014:1–7. doi:10.1155/2014/431787ArticleCASGoogle Scholar
- Rocha-Santos TA (2014) Sensors and biosensors based on magnetic nanoparticles. TrAC Trends Anal Chem 62:28–36. doi:10.1016/j.trac.2014.06.016ArticleCASGoogle Scholar
- Santangelo S, Gorrasi G, Di Lieto R et al (2011) Polylactide and carbon nanotubes/smectite-clay nanocomposites: preparation, characterization, sorptive and electrical properties. Appl Clay Sci 53:188–194. doi:10.1016/j.clay.2010.12.013ArticleCASGoogle Scholar
- Schoumans OF, Chardon WJ, Bechmann ME et al (2014) Mitigation options to reduce phosphorus losses from the agricultural sector and improve surface water quality: a review. Sci Total Environ 468–469:1255–1266. doi:10.1016/j.scitotenv.2013.08.061ArticleCASGoogle Scholar
- SciFinder (2014) SciFinder ® database.www.scifinder.cas.org. www.scifinder.cas.org. Accessed 6 Sep 2014
- Scott N, Chen H (2013) Nanoscale science and engineering for agriculture and food systems. Ind Biotechnol 9:17–18 ArticleGoogle Scholar
- Shi XF, Xia XY, Cui GW et al (2015) Multiple exciton generation application of PbS quantum dots in ZnO@PbS/graphene oxide for enhanced photocatalytic activity. Appl Catal B Environ 163:123–128. doi:10.1016/j.apcatb.2014.07.054ArticleCASGoogle Scholar
- Shivendu R, Nandita D, Lichtfouse E (2016) Nanoscience in food and agriculture 2, 1st edn. Springer International Publishing Switzerland, Switzerland Google Scholar
- Shukla A, Nandita D, Shivendu R et al (2017) Nanotechnology towards prevention of anemia and osteoporosis: from concept to market. Biotechnol Biotechnol Equip. doi:10.1080/13102818.2017.1335615Google Scholar
- SIAD (2014) Scopus indexed article database. www.scopus.com. www.scopus.com. Accessed 6 Jun 2014
- Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi J Biol Sci 21:13–17. doi:10.1016/j.sjbs.2013.04.005ArticleCASGoogle Scholar
- Silva LIB, Ferreira FDP, Freitas AC et al (2010) Optical fibre-based micro-analyser for indirect measurements of volatile amines levels in fish. Food Chem 123:806–813. doi:10.1016/j.foodchem.2010.05.014ArticleCASGoogle Scholar
- Sinha Ray S (2013) 8—Tensile properties of environmentally friendly polymer nanocomposites using biodegradable polymer matrices and clay/carbon nanotube (CNT) reinforcements. In: Environmentally friendly polymer nanocomposites. Elsevier, pp 225–268
- Sinha A, Singh VN, Mehta BR, Khare SK (2011) Synthesis and characterization of monodispersed orthorhombic manganese oxide nanoparticles produced by Bacillus sp. cells simultaneous to its bioremediation. J Hazard Mater 192:620–627. doi:10.1016/j.jhazmat.2011.05.103ArticleCASGoogle Scholar
- Sireesh BM, Mandal BK, Ranjan S, Dasgupta N (2015) Diastase assisted green synthesis of size- controllable gold nanoparticles. RSC Adv. doi:10.1039/c5ra03117fGoogle Scholar
- Sireesh BM, Mandal BK, Shivendu R, Nandita D (2017) Diastase induced green synthesis of bilayered reduced graphene oxide and its decoration with gold nanoparticles. J Photochem Photobiol B Biol 166:252–258 ArticleCASGoogle Scholar
- Sirinutsomboon B, Delwiche MJ, Young GM (2011) Attachment of Escherichia coli on plant surface structures built by microfabrication. Biosyst Eng 108:244–252. doi:10.1016/j.biosystemseng.2010.12.007ArticleGoogle Scholar
- Siripireddy B, Mandal BK, Shivendu R et al (2017) Nano-zirconia – Evaluation of its antioxidant and anticancer activity. J Photochem Photobiol B Biol. doi:10.1016/j.jphotobiol.2017.04.004Google Scholar
- Steenackers H, Hermans K, Vanderleyden J, De Keersmaecker SCJ (2012) Salmonella biofilms: an overview on occurrence, structure, regulation and eradication. Food Res Int 45:502–531. doi:10.1016/j.foodres.2011.01.038ArticleCASGoogle Scholar
- Su X-L, Li Y (2004) Quantum dot biolabeling coupled with immunomagnetic separation for detection of Escherichia coli O157:H7. Anal Chem 76:4806–4810. doi:10.1021/ac049442+ArticleCASGoogle Scholar
- Subramani A, Voutchkov N, Jacangelo JG (2014) Desalination energy minimization using thin film nanocomposite membranes. Desalination 350:35–43 ArticleCASGoogle Scholar
- Sugunan A, Warad HC, Thanachayanont C et al (2005) Zinc oxide nanowires on non-epitaxial substrates from colloidal processing, for gas sensing applications. In: Nanostructured and advanced materials for applications in sensor, optoelectronic and photovoltaic technology. Springer, Berlin, pp 335–338
- Tahir M, Amin NS (2015) Indium-doped TiO2 nanoparticles for photocatalytic CO2 reduction with H2O vapors to CH4. Appl Catal B Environ 162:98–109. doi:10.1016/j.apcatb.2014.06.037ArticleCASGoogle Scholar
- Tammina SK, Mandal BK, Ranjan S, Dasgupta N (2017) Cytotoxicity study of Piper nigrum seed mediated synthesized SnO2 nanoparticles towards colorectal (HCT116) and lung cancer (A549) cell lines. J Photochem Photobiol B Biol 166:158–168. doi:10.1016/j.jphotobiol.2016.11.017ArticleCASGoogle Scholar
- Tang W-W, Zeng G-M, Gong J-L et al (2014) Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: a review. Sci Total Environ 468–469:1014–1027. doi:10.1016/j.scitotenv.2013.09.044ArticleCASGoogle Scholar
- Thorburn PJ, Wilkinson SN, Silburn DM (2013) Water quality in agricultural lands draining to the Great Barrier Reef: a review of causes, management and priorities. Agric Ecosyst Environ 180:4–20. doi:10.1016/j.agee.2013.07.006ArticleGoogle Scholar
- Tungittiplakorn W, Lion LW, Cohen C, Kim JY (2004) Engineered polymeric nanoparticles for soil remediation. Environ Sci Technol 38:1605–1610. doi:10.1021/es0348997ArticleCASGoogle Scholar
- Tungittiplakorn W, Cohen C, Lion LW (2005) Engineered polymeric nanoparticles for bioremediation of hydrophobic contaminants. Environ Sci Technol 39:1354–1358. doi:10.1021/es049031aArticleCASGoogle Scholar
- Türkoğlu EA, Yavuz H, Uzun L et al (2013) The fabrication of nanosensor-based surface plasmon resonance for IgG detection. Artif Cells Nanomed Biotechnol 41:213–221. doi:10.3109/10731199.2012.716066ArticleCASGoogle Scholar
- Valladares Linares R, Li Z, Sarp S et al (2014) Forward osmosis niches in seawater desalination and wastewater reuse. Water Res 66:122–139 ArticleCASGoogle Scholar
- Vörösmarty CJ, McIntyre PB, Gessner MO et al (2010) Global threats to human water security and river biodiversity. Nature 468:334–334. doi:10.1038/nature09549ArticleCASGoogle Scholar
- Walia N, Dasgupta N, Ranjan S et al (2017) Fish oil based vitamin D nanoencapsulation by ultrasonication and bioaccessibility analysis in simulated gastro-intestinal tract. Ultrason Sonochem 39:623–635. doi:10.1016/j.ultsonch.2017.05.021ArticleCASGoogle Scholar
- Wang ZL (2012) Self-powered nanosensors and nanosystems. Adv Mater 24:280–285. doi:10.1002/adma.201102958ArticleCASGoogle Scholar
- Wang Q, Hong J, Yan Y (2014) Biomimetic capillary inspired heat pipe wicks. J Bionic Eng 11:469–480. doi:10.1016/S1672-6529(14)60059-7ArticleGoogle Scholar
- Warad HC, Ghosh SC, Thanachayanont C et al (2004) Highly luminescent manganese doped ZnS quantum dots for biological labeling. In: Proceedings of international conference on smart materials (SMARTMAT-04), Chiang Mai, Thailand
- Wegner LH (2012) Using the multifunctional Xylem probe for in situ studies of plant water and ion relations under saline conditions. Methods Mol Biol 913:35–66. doi:10.1007/978-1-61779-986-0-3CASGoogle Scholar
- Zaini PA, De La Fuente L, Hoch HC, Burr TJ (2009) Grapevine xylem sap enhances biofilm development by Xylella fastidiosa. FEMS Microbiol Lett 295:129–134. doi:10.1111/j.1574-6968.2009.01597.xArticleCASGoogle Scholar
- Zhang S, Ren F, Wu W et al (2014a) Size effects of Ag nanoparticles on plasmon-induced enhancement of photocatalysis of Ag-α-Fe2O3 nanocomposites. J Colloid Interface Sci 427:29–34. doi:10.1016/j.jcis.2013.12.012ArticleCASGoogle Scholar
- Zhang X, Zhang X, Yang B et al (2014b) A new class of red fluorescent organic nanoparticles: noncovalent fabrication and cell imaging applications. ACS Appl Mater Interfaces 6:3600–3606. doi:10.1021/am4058309ArticleCASGoogle Scholar
- Zhang X, Zhang X, Yang B et al (2014c) Facile fabrication of AIE-based stable cross-linked fluorescent organic nanoparticles for cell imaging. Colloids Surf B Biointerfaces 116:739–744. doi:10.1016/j.colsurfb.2013.12.010ArticleCASGoogle Scholar
- Zhao W, Guo Y, Wang S et al (2015) A novel ternary plasmonic photocatalyst: ultrathin g-C3N4 nanosheet hybrided by Ag/AgVO3 nanoribbons with enhanced visible-light photocatalytic performance. Appl Catal B Environ 165:335–343. doi:10.1016/j.apcatb.2014.10.016ArticleCASGoogle Scholar
Acknowledgements
Authors are acknowledging Department of Biotechnology (DBT, India) for the funding with grant number—BT/PR10414/PFN/20/961/2014. SR is acknowledging Veer Kunwar Singh Memorial Trust, Chapra, Bihar, India, for partial support—VKSMT/SN/NFNA/0011.